Darker Stars

My latest book, entitled “Darker Stars” is now available in paperback. The book’s sub-title is “New Evidence: The Scope of Our Growing Solar System, Planet X, Invisible Planetoids, Gas Giants, Comets, Planet Nine, and More…”. Here is the description on the back cover:

“Darker Stars explores the often contentious subject of Planet X. Building upon the historically hot-and-cold hunt for an additional planet in our solar system, the author examines the recent resurgence of scientific interest in this subject, in the re-branded form of Planet Nine. The elusive nature of this object provides the impetus for a hypothesis about planet building in interstellar space, and associated phenomena. In particular, free-floating planetary mass objects and sub-brown dwarfs exemplify the anomalous new characters shaking the foundation of the classic star/planet boundary.

“Our solar system, too, is full of anomalies, strongly implying the presence of another massive planetary body. As our understanding of dark bodies in interstellar space builds, the author argues whether the existence of Planet X-type bodies should now be considered the new norm. With over 100 images and sources, approximately 500 references, and an extensive index, Darker Stars provides a robust and scientifically-based study of the re-fashioned outer solar system.”

The book is 376 pages long, and is published by Timeless Voyager Press in a 6″x9″ paperback format, available through Amazon.  There is a vast amount of information about the mysteries of the outer solar system within the book.  The book also discusses recent advances in understanding about the outer solar system, and hypotheses about Planet X and its re-branded corollary Planet Nine. I present a new hypothesis about how planets might evolve over time in interstellar space, and how this process may explain why Planet X has been so difficult to observe directly. Why assume objects beyond Neptune form the same way as those within? Drag and solar wind effects on dust will be different, even more so in interstellar space beyond heliosphere. New rules are needed for the outer solar system. #darkerstars

Planetary Nebula

‘Darker Stars’ brings together a decade of Dark Star blogs and articles, updated with brand new material, and then completely re-written into a comprehensive and fully-referenced non-fiction book. It is both robust and challenging in its approach.

Book Contents

Chapter 1        The Incomplete Solar System

Chapter 2        The History of Planet X

Chapter 3        Sub-Brown Dwarfs in the Infrared

Chapter 4        The Extended Scattered Disk

Chapter 5        Re-Branding Planets

Chapter 6        The Hunt for Planet Nine

Chapter 7        Arguments Against Planet Nine

Chapter 8        Planet Nine and the Nice Model

Chapter 9        Further Planet X Evidence Among The Minor Bodies

Chapter 10      The Origins of Planet X

Chapter 11      Building Planets in Interstellar Space

Chapter 12      The Shroud Hypothesis

Chapter 13      An Abundance of Dark Stars

Chapter 14      ‘Oumuamua

Chapter 15      Jovian Mysteries

Chapter 16      Puzzling Pluto

Chapter 17      Meandering Mars

Chapter 18      Water World

Chapter 19      Moon Mysteries

Chapter 20      Comets and Asteroids

Chapter 21      Nibiru

Chapter 22      The Dark Star Revisited

Online Retailers

Darker Stars cover

The new paperback book is available from Barnes and Noble: 

It is also available from many other reputable booksellers online. including Amazon:.


Signed Copies

Signed and dedicated copies of the book can be obtained directly from me: I’m based in England, so bear in mind the likely postal costs for what is quite a substantial book!

Author Andy Lloyd presents his new book ‘Darker Stars’

Please e-mail Andy Lloyd for further details at

  • 0

Planet Nine – 3 Years on

There is no doubt that the scientific advocacy for a Planet X body has been significantly strengthened by the work of Brown and  Batygin, who published their first paper about ‘Planet Nine’ three years ago (1).  Mike Brown is a renowned astronomer in academic circles, whose speciality is hunting down distant Kuiper Belt Objects and dwarf planets in the outer solar system. 

Following on from the work of Trujillo and Sheppard (2), he and his Caltech colleague Konstantin Batygin studied odd similarities in the orbits of distant scattered disk objects (SDOs) which lie beyond the regular Kuiper belt.  Certain orbital properties of these eschewed objects seemed to be gathered into place within a common clustering, and the astrophysicists determined that something massive located well beyond them must have been responsible for shepherding these objects into such a serendipitous arrangement.  They advocated a renewed search for Planet X, which had been confined to the doldrums of astronomy for decades, and re-branded the object ‘Planet Nine’ (3).

Relative Positions of the KBO Cluster Pointing to Planet Nine. Image credit: Caltech

Planet Nine is thought to be a super-Earth object, upwards of 10 Earth masses.  Searches for exoplanets have determined that such planets are common enough elsewhere, but, so far as we know, absent from our own shores within this solar system.  Planet Nine is likely twenty times further away from us than Pluto, maybe more, and how such an object could have ended up so far away from the rest of the planets has vexed scientists.  Of course, it remains hypothetical, because, despite the observational strength of modern day astronomy, Planet Nine has not been located.  Its position is unknown (beyond ruling out certain sections of the sky), as its existence can only be inferred from the clustering data, but not determined directly from it.

Despite its 3-year long ‘no-show’, Brown and Batygin stand by their initial paper, and have published a follow-up paper this month to continue to argue their case (4).  It primarily responds to the arguments raised by scientists working for the Outer Solar System Origins Survey (OSSOS) who found similar objects which did not seem to belong to the P9 cluster (5), and who went on to argue that the evidence for Planet Nine should be dismissed due to inherent observational bias in the data (6).  At the time, Batygin quickly refuted that criticism, finding more patterns in the outer solar system snow, although I wondered whether the OSSOS data may be opening up another issue entirely about Planet Nine’s argued-for position (7).  Anyway, Brown and Batygin’s new paper presents their subsequent work about the issue of observational bias, and offers a robust analysis leading to following conclusion:

“From this now more complete understanding of the biases, we calculate that the probability that these distant KBOs would be clustered as strongly as observed in both longitude of perihelion and in orbital pole position is only 0.2%. While explanations other than Planet Nine may someday be found, the statistical significance of this clustering is now difficult to discount.” (4)

Having rebutted their critics on one front, the Caltech team face another problem this month, this time in the form of an alternative explanation for the clustering anomalies proposed by researchers from the University of Cambridge.  This new hypothesis involves the possible existence of a very significant disk of objects beyond the Kuiper belt, with a combined mass of 10 Earth masses, or perhaps less. 

This massive ring of material would be eccentrically inclined to the invariant plane of the planets.  The astrophysicists’ calculations and simulations show that such a massive eccentric disk might have the gravitational pull to create the observed clustering of extreme SDOs (8), but the mass required represents a couple of orders of magnitude of mass greater than the known Kuiper belt.  Arguing that studies of other young star systems show extended debris disks, the authors seem quietly confident about the potential existence of such a massive extended disk:

Credit: ESO/M. Kornmesser

““If you remove planet nine from the model and instead allow for lots of small objects scattered across a wide area, collective attractions between those objects could just as easily account for the eccentric orbits we see in some TNOs,” said [Antranik] Sefilian, who is a Gates Cambridge Scholar and a member of Darwin College.” (9)

Brown points out that it’s unusual in science for a new hypothesis – in this case the proposed existence of Planet Nine to explain the observed clustering of SDOs – to not face a barrage of counter-hypotheses.  For some reason, all of the attention up until this point has been focussed upon the statistical credibility of the cluster properties.  Brown acknowledges the new Cambridge paper is the first stab at an alternative explanation for the extended SDO cluster (11).  In fact, a similar explanation has already been offered within academic circles, by a group based in Colorado led by Ann Marie Madigan last summer.  The Colorado group argued that a significant amassed collection of distant asteroids could explain the observed anomalies (10).  Mike Brown explains the difference between these two papers: “…although the hypotheses sound similar, they are really totally unrelated. The one from last summer doesn’t actually explain…what we see. This one, at least, does.” (12)

Despite actually offering what appears to be a mathematically credible explanation, Brown is sceptical of the new Cambridge paper on a couple of fronts: (1) The required mass of the disk (as above), and (2) its provenance (11).  How could such a warped extended disk have been shaped in the first place?  This raises another vexed question about how such a weird disk came to be, which flies in the face of the Cambridge authors’ claim to have provided a simpler explanation than Planet Nine.

It is known that the invariant plane of the planets is warped away from the solar equatorial plane by about 6-7 degrees.  Planet Nine, on the other hand, is likely to be inclined by about 30 degrees, and may itself represent an explanation for this warping, should its mass be significant enough to have shaped the rest of the solar system in this way.  One of the several strands of evidence pointing towards the existence of a Planet Nine/X body is the ~6 degree tilt of the invariant plane of the planets away from the Sun’s own equatorial plane.  In other words, like the Earth, the Sun’s axis is tilted away from the plane of the planets.

All things being equal, the Sun and the planets should have formed out of a common rotating disk of primordial matter – the coalescing pre-solar nebula.  It’s understandable that many of the planets engaged in a bit of to-and-fro during the early period of planet-forming, and so ended up a little skewed.  But the Sun is the dominant player, and it should take a considerable gravitational influence to draw the planets away from its own equatorial plane.  Yet, the Sun is seemingly a lonely star.  So, that pesky 6 degree tilt has to be explained by something.  Maybe a passing star pulling at the planets at some point in the past; or maybe the Sun had an early companion (within its birthing dense core) which affected the system’s alignment; or maybe another significant planet strongly inclined to the ecliptic, influencing the others over time (13).

Studies of protoplanetary disks in young star systems is revealing similar warps elsewhere.  The latest case concerns a very young single protostar system known as L1527.  This system is so young that there is an implication that the warping may be occurring in the primordial cloud itself (14).  The disk in question is effectively in two parts, where the warping issue affects the inner disc out to some 40-60 AU from the star (15).  In the perceived absence of a companion object causing this effect, it is thought that the gravitational effect of the cloud itself is causing the warp in the protoplanetary disk.

But here’s the thing:  Just because there isn’t a self-evident, luminous companion object near to L1527, doesn’t mean that there isn’t a darker companion lurking around somewhere nearby, tugging at the disk.  It has been suggested that all stars begin  life within dense cores, containing at least two protostars (16).  In turn, this has implications about the potential for failed stars being ubiquitous companion objects (17).  So, maybe L1527 does have an unseen sub-stellar companion affecting the structure of its inner disk.

Image Credit: (18)

Another item of interest to add is news about another misaligned disk, this time around a young binary star system (19).  In this case, the disk orbits at right angles to the orbit of the two stars which make up the binary HD 98800, meaning that the disk is in a perpendicular polar misalignment (19).  Furthermore, the authors state that despite the extreme misalignment, the disk itself has physical properties similar to those around single stars, including, therefore, potential planet forming conditions.

So it is clear that such warped arrangements are by no means confined to the solar system, can be pretty extreme, and can appear very early on in the lifetime of a star system.  What’s less clear is why they arise in the case of sible star system, seemingly minding their own business.  Some kind of distant, dark companion object pulling at the rest of the system seems a reasonable enough explanation – one that was already present, or co-forming, within the stellar birth cluster.  Perhaps that might be a body the size of Planet Nine (a proposed super-Earth), perhaps something bigger still.

So, happy third birthday, Planet Nine!  You may still be a mere twinkling in a Californian astronomer’s eye, but you’ve already evoked a modern renaissance in the history of Planet X.

Written by Andy Lloyd, 24th January 2019


1)  K. Batygin & M. Brown “Evidence for a Distant Giant Planet in the Solar System” The Astronomical Journal, 20 January 2016, 151(2)

2)  Chad Trujillo & Scott Sheppard “A Sedna-like body with a perihelion of 80 astronomical units” Nature, 27 March 2014, 507: 471-474,

3)  Andy Lloyd “Massive Planet X Now Urgently Sought by Top Planet-Hunters” 20-23 January 2016,

4)  Michael Brown and Konstantin Batygin “Orbital Clustering in the Distant Solar System” The Astronomical Journal, 22 January 2019, 157(2)

5)  Cory Shankman et al. “OSSOS VI. Striking Biases in the detection of large semimajor axis Trans-Neptunian Objects”, 19th June 2017, The Astronomical Journal, 14 July 2017, 154(2)

6)  Josh Sokol “New haul of distant worlds casts doubt on Planet Nine”, 21st June 2017

7)  Andy Lloyd “Planet Nine: Are They Digging in the Wrong Place?” 3 July 2017

8)  Antranik Sefilian and Jihad Touma. ‘Shepherding in a self-gravitating disk of trans-Neptunian objects.’ The Astronomical Journal 21 January 2019, 157(2)

9)  Sarah Collins “Mystery orbits in outermost reaches of solar system not caused by ‘Planet Nine’, say researchers” 21 January 2019

10) Daniel Strain “Collective gravity, not Planet Nine, may explain the orbits of ‘detached objects'” 4 June 2018

11)  Mike Brown “Is Planet Nine just a ring of icy bodies?” 22 January 2019

12)  @plutokiller replying to @darkstarandy, 24/1/19

13)  Andy Lloyd “Does Planet Nine Solve the Riddle of the Sun’s Obliquity?” 30th July 2016

14)  RIKEN Press Release “Early protostar already has a warped disk” 1 January 2019,

15)  Nami Sakai et al. “A warped disk around an infant protostar” Nature, 31 December 2018,

16)  Sarah Sadavoy & Steven Stahler “Embedded Binaries and Their Dense Cores” MNRAS, 21 August 2017, 469(4): pp3881–3900

17)  Andy Lloyd “The Sun was Born with a Companion” 15 June 2017

18)  Peter Thorley “Double star system flips planet-forming disk into pole position” 14 January 2019

19)  Grant Kennedy et al. “A circumbinary protoplanetary disc in a polar configuration” 15 january 2019 Nature Astronomy Letters, with thanks to Lee

  • 0

How Dust Clumps Together in Space

One of the essential ingredients of planet-building is the clumping of dust in space.  Planets can build up through the gravitational attraction of objects in space which are already about 1000km across.  The problem is how do these proto-planetessimals get built?  The mechanism for how dust clumps together has not been well understood.  After all, when materials moving at speed through space collide, they may break apart in the force of the impact, showering down collisional cascades of ever small materials – the exact opposite of planetessimal-building.  Somehow, dust must clump together into grains, which then join forces to create space pebbles, then boulders, then mountains, etc.

For these materials to adhere together, an inherent stickiness may be needed, aided by the presence of greasy organic compounds (in the form of aliphatic carbon).  While it is recognised that this greasy component is more readily available in interstellar space than previously suspected (1), does that adhesive property extend down to space dust?  If not, what mechanism could be bringing together ever larger clumps of plain old granular dust in space?

New research work suggests that dust and gas are not happy bedfellows within a magnetic field.  So, rather like oil in water, dust particles seem to come together within gas as the mixture traverses the galactic tides.  Indeed, any force brought to bear on dust moving through gas seems to create this clumping effect:

“… it was previously assumed that dust was stable in gas, meaning the dust grains would ride along with gas without much happening, or they would settle out of the gas if the particles were big enough, as is the case with soot from a fire. “…dust and gas trying to move with one another is unstable and causes dust grains to come together,” says [Phil] Hopkins [Professor of theoretical astrophysics at Caltech]...These gas-dust instabilities are at play anywhere in the universe that a force pushes dust through gas, whether the forces are stellar winds, gravity, magnetism, or an electrical field.” The team’s simulations show material swirling together, with clumps of dust growing bigger and bigger.” (2)

Computer simulations looking at how dust moves through magnetized gas seems to show this clumping effect as a general mechanism.  The dust grains are like boulders in a fast moving and turbulent river (the gas within a moving stream of magnetized material).  As the flows wrap around these grains and pull them back and forth, the grains have a tendency to coalesce, forming ever larger clumps.  This is not just applicable to planet formation in proto-planetary disks, but may also extend to interstellar space:

“As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows.” (3)  Read More…

  • 0

The Goblin Points to Presence of Planet X

The announcement of the discovery a new object in the outer solar system may bring us a step closer to the elusive Planet X (more recently dubbed Planet Nine).  This new dwarf object, known as 2015 TG387, is a distant member of the mysterious scattered disk of objects beyond the Kuiper Belt.  This particular object can travel so far away from the Sun during its orbit that it moves through the inner Oort cloud of comets, beyond 2000AU:

The newly discovered object is called 2015 TG387, is probably a small dwarf planet at just 300km across, and is incredibly far away. It is currently lying about two and a half times further away from the Sun than Pluto is.  It often reaches much further away. Its orbit takes it to about 2,300 AU — that is 2,300 times as far away from the sun as we are, and vastly more than the already huge 34 AU that the distant Pluto sits at.(1)

The object’s vast orbit is so vast that it takes about 40,000 years to do one circuit around the Sun.  Yet, its orbit is highly eccentric.  It distance from the Sun varies from 64AU at perihelion to 2037AU at aphelion.  Incredibly, then, it skirts both the Kuiper Belt and the inner Oort cloud, transiting between these quite distinct belts of objects.

As more objects are discovered between the Kuiper Belt and the inner Oort cloud (a torus-shaped disk of comets), the classifications of these objects are becoming more complex.  A significant factor is whether these objects have perihelia within 40AU, which might briefly bring them within the influential scope of the planet Neptune.  Extreme scattered disk objects fall into this category.  Significantly, 2015 TG387 is fully detached from this influence at perihelion, and may be considered to be an inner Oort cloud object.  Read More…

  • 0

Planet Nine and the Kuiper belt

In conjunction with a scientist from the University of Michigan, the Caltech team who originally coined the term Planet Nine in 2016 have written a new paper about its formation, and the subsequent layout of the outer solar system.  Having set out the evidence for this proposed object in the paper (1), they note three possible scenarios for its formation:

1)  The planet’s capture from the retinue of a passing star; or, alternatively, the capture of a free-floating interstellar planet

2)  The planet’s semi-ejection from the inner solar system and subsequent gradual drift outwards

3)  The planet’s formation in situ.

All three of these scenarios require certain conditions for them to work, which means that no single formation theory stands out as particularly probable.  The capture and scattering models depend upon the interjection of outside bodies (passing stars or brown dwarfs, or objects in the Sun’s birth cluster).  The in situ formation of a planet so far from the Sun implies that the Sun’s protoplanetary disk was significantly larger than generally accepted.  The formation of Planet Nine in its calculated position thus remains problematic, based upon standard models of planetary and solar system formation (e.g. the Nice model).  Further, whatever processes which placed it in its proposed current position would have significantly affected the layout of the Kuiper belt within its overarching orbit.  This factor is what the current investigation described by this paper aims to solve.

This paper then describes computer simulations of the early Kuiper belt, and how  the shape and extent of the fledgling belt may have affected the complex interplay between it, Planet Nine, and the objects in the extended scattered disk (1).  The research team modelled two distinct scenarios for the early Kuiper belt, each of which matches one or more formation scenarios for Planet Nine.  The first is a ‘narrow’ disk, similar to that observed:  The Kuiper disk appears to be truncated around 50AU, with objects found beyond this zone likely having been scattered outwards by processes which remain contentious.  The second scenario is a ‘broad’ disk, where objects in the Kuiper belt would have routinely populated the space between Neptune and the proposed orbit of Planet Nine, hundreds of astronomical units out.  This would match a formation scenario involving an extensive protoplanetary disk.  Read More…

  • 0

New Infra-red Search for sub-Brown Dwarfs Planned

Brown dwarfs are notoriously hard to find.  It’s not so bad when they are first born: They come into the Universe with a blast, shedding light and heat in an infantile display of vigour.  But within just a few million years, they have burned their available nuclear fuels, and settle down to consume their leaner elemental pickings.  Their visible light dims considerably with time to perhaps just a magenta shimmer.  But they still produce heat, and the older they get, the more likely that a direct detection of a brown dwarf will have to be in the infra-red spectrum.

This doesn’t make them much easier to detect, though, because to catch these faint heat signatures in the night sky, you first need to have a cold night sky.  A very cold night sky.  Worse, water vapour in the atmosphere absorbs infra-red light along multiple stretches of the spectrum.  The warmth and humidity of the Earth’s atmosphere heavily obscures infra-red searches, even in frigid climates, and so astronomers wishing to search in the infra-red either have to build IR telescopes atop desert mountains (like in Chile’s Atacama desert), or else resort to the use of space-based platforms.  The downside of the latter is that the telescopes tend to lose liquid helium supplies rather quickly, shortening their lifespan considerably compared to space-based optical telescopes.

The first major sky search using a space telescope was IRAS, back in the 1980s.  Then came Spitzer at the turn of the century, followed by Herschel, and then WISE about five years ago.  Some infra-red telescopes conduct broad searches across the sky for heat traces, others zoom in on candidate objects for closer inspection.  Each telescope exceeds the last in performance, sometimes by orders of magnitude, which means that faint objects that might have been missed by early searches stand more of a chance of being picked up in the newer searches.

The next big thing in infra-red astronomy is the James Webb Space Telescope (JSWT), due for launch in Spring 2019.  The JSWT should provide the kind of observational power provided by the Hubble Space telescope – but this time in infra-red.  The reason why astronomers want to view the universe in detail using infra-red wavelengths is that very distant objects are red-shifted to such a degree that their light tends to be found in the infra-red spectrum, generally outside Hubble’s operational parameters (1).  Essentially, the JWST will be able to see deeper into space (and, therefore, look for objects sending their light to us from further back in time when the first stars and galaxies emerged).  Read More…

  • 0

Planet Nine and the Nice Model

It looks like it’ll be another long, lonely autumn for Dr Mike Brown on the summit of the Hawaiian dormant volcano Mauna Kea, searching for Planet Nine.  He made use of the 8m Subaru telescope last year, and it looks like he’s back again this year for a second role of the dice (unless he does all this by remote control from Pasadena?).  I can only assume, given the time of the year, that the constellation of Orion remains high on their list of haystacks to search.

A recent article neatly sums up the current state of play with the hunt for Planet Nine (1), bringing together the various anomalies which, together, seem to indicate the presence of an undetected super-Earth some twenty times further away than Pluto (or thereabouts).  Given how much, I’ve written about this materials already, it seems unnecessary to go over the same ground.  I can only hope that this time, Dr Brown and his erstwhile colleague, Dr Batygin, strike lucky.  They have their sceptical detractors, but the case they make for Planet Nine still seems pretty solid, even if the gloss has come off it a bit recently with the additional OSSOS extended scattered disk object discoveries (2).  But there’s nothing on Dr Brown’s Twitterfeed to indicate what his plans are regarding a renewed search for Planet Nine.

Even if the Planet Nine article’s discussion about a new hunt for the celestial needle in the haystack is misplaced, it does make a valid point that super-Earths, if indeed that is what this version of Planet X turns out to be, are common enough as exo-planets, and weirdly absent in  our own planetary backyard.  So a discovery of such an object way beyond Neptune would satisfy the statisticians, as well as get the bubbly flowing at Caltech.  Dr Brown did seem to think that this ‘season’ would be the one.  We await with bated breath…

Meanwhile, the theoretical work around Planet Nine continues, with a new paper written by Konstantin Batygin and Alessandro Morbidelli (3) which sets out the underlying theory to support the result of the 2016 computer simulations which support the existence of Planet Nine (4).  Dr Morbidelli is an Italian astrophysicist, working in the south of France, who is a proponent of the Nice model for solar system evolution (named after the rather wonderful French city where he works).  This model arises from a comparison between our solar system’s dynamics, and those of the many other planetary systems now known to us, many of which seem bizarre and chaotic in comparison to our own.  Thus, the Nice model seeks to blend the kinds of dynamical fluctuations which might occur during the evolution of a star’s planetary system with both the outcomes witnessed in our own solar system, and the more extreme exoplanets observed elsewhere (5).  It invokes significant changes in the positions of the major planets during the history of the solar system, for instance.  These migrations have knock on effects which then drive other disturbances in the status quo of the early solar system, leading to the variations witnessed both here and elsewhere.  For instance, Dr Morbidelli lists one of the several factors which brought about the Nice model:
Read More…

  • 0

Planet Nine: Are They Digging in the Wrong Place?

Last month, scientists working on the Outer Solar System Origins Survey (OSSOS) published a large dataset of new Kuiper Belt Objects, including several new extended scattered disk objects discovered way beyond the main belt (1).  These four new distant objects seemed to have a more random set of properties, when compared to the rather more neat array of objects which had previously been constituted the Planet Nine cluster.  This led to scepticism among the OSSOS scientific team that there was any real evidence for Planet Nine.  Instead, they argued, the perceived patterns of these distant objects might be a function of observational bias (2).

Whilst reporting on these new discoveries and their potential implications, I predicted that the debate was about to hot up, bringing forth a new series of Planet X-related articles and papers (3).  Indeed, leading outer solar system scientists were publishing related materials in quick succession (4,5), each finding new correlations and patterns which might indicate the presence of an unseen perturbing influence.


Now, Caltech’s Konstantin Batygin has published an article analysing the impact of the discovery of these new extended scattered disk objects on the potential for a Planet Nine body.  The short conclusion he draws is that although the objects are, on the face of it, randomly distributed, their property set is largely consistent with Caltech’s original thesis (6).  They are either anti-aligned to the purported Planet Nine body (as the original cluster is thought to be), or aligned with it in a meta-stable array.

Read More…

  • 0

Recent updates on the Search for Planet Nine

It’s a year since proposed the existence of Planet Nine (1).  Despite the fact that its discovery remains elusive, there have been a great many academic papers written on the subject, and no shortage of serious researchers underpinning the theoretical concepts supporting its existence.  Many have sought evidence in the solar system which indirectly points to the perturbing influence of this mysterious world; others have provided data which have helped to constrain the parameters of its orbit (by effectively demonstrating where it could NOT be).  Throughout 2016, I have been highlighting these developments on the Dark Star Blog.


At the close of 2016, two further papers were published about Planet Nine.  The first of these delves more deeply into the possibility that Planet Nine (Brown’s new name for Planet X, which seems to have caught on among astronomers keen to distance this serious search from, well, the mythological planet Nibiru) has a resonance relationship with some of the objects beyond the Edgeworth-Kuiper Belt which it is perturbing.  These kinds of resonance relationships are not unusual in planetary orbital dynamics, so such a suggestion is not that odd, even given the eccentricities of the bodies involved here.  The new research, from the University of California, Santa Cruz, bolsters the case for this kind of pattern applying to Planet Nine’s orbit:

“We extend these investigations by exploring the suggestion of Malhotra et al. (2016) (2) that Planet Nine is in small integer ratio mean-motion resonances (MMRs) with several of the most distant KBOs. We show that the observed KBO semi-major axes present a set of commensurabilities with an unseen planet at ~654 AU (P~16,725 yr) that has a greater than 98% chance of stemming from a sequence of MMRs rather than from a random distribution.” (3)

Their randomised ‘Monte Carlo’ calculations provide a best fit with a planet of between 6 and 12 Earth masses, whose eccentric orbit is inclined to the ecliptic by about 30 degrees.  They are unable to point to a specific area of the sky to search, but provide a broad-brush region which they favour as most probable.  Dr Millholland has also helpfully provided a 3D manipulable 3D figure of the cluster of extended scattered disk objects allegedly affected by the purported Planet Nine, alongside their extrapolated orbit for it (4).  Read More…

  • 0

Niku, Drac and L91 Perturbed by Planet Nine…or Something Else?

Dr Konstantin Batygin and Dr Mike Brown argue in their latest paper that the retrograde Kuiper Belt Objects Niku and Drac could have once been extended scattered disk objects (1).  If you have been following these blogs during 2016, it will come as no surprise to you to hear that the influence which perturbed them into their anomalous current orbits was Planet Nine, the 10+Earth-mass planet lurking several hundred-plus Astronomical Units away, whose gravitational influence seems to be influencing the objects in and beyond the Kuiper Belt beyond Neptune (2):

“Adopting the same parameters for Planet Nine as those previously invoked to explain the clustering of distant Kuiper belt orbits in physical space, we carry out a series of numerical experiments which elucidate the physical process though which highly inclined Kuiper belt objects with semi-major axes smaller than a < 100 AU are generated. The identified dynamical pathway demonstrates that enigmatic members of the Kuiper belt such as Drac and Niku are derived from the extended scattered disk of the solar system.” (1) Read More…

  • 0