Archives

Life in the Clouds

I’ve spent many years extolling the virtues of life on a cold brown dwarf moon.  Similar to the Galilean moons of Jupiter, a moon orbiting a sub-brown dwarf would be warmed internally by the tidal forces generated by its proximity to such a powerful gravitational force.  Additionally, the sub-brown dwarf itself might provide some local heating, or at least an abundance of charged-particle strewn local magnetic fields to energise the sub-stellar environment.  So, a habitable environment on a moon seems a likely scenario.  If a cold, dark sub-brown dwarf were to be found orbiting the Sun at a great distance, then it neatly provides the grounding for extraterrestrial life on our doorstep (1).

This seems to me to be the simplest scenario for life in a sub-brown dwarf system.  There are complexities – tidally-locked moons (2), lack of light, and so on.  But the basics are there.

lifeinclouds

Another exotic possibility is that the sub-brown dwarf itself might harbour life.  The complex cloud systems in these failed stars can contain layers which are at room temperature, and abundant in water and other chemical goodies which could form the building blocks of life.  A team of astronomers from Edinburgh University have been considering this very point, wondering whether very simple life might be able to get going in the clouds of a cold brown dwarf (3).  This life might arise in two ways – either somehow evolving from scratch in the cloud environment, or originally being seeded into it by an impacting asteroid or comet.  Either way, conditions for life might be good, except for the lack of a solid surface to dwell on:

Floating out by themselves in the Milky Way galaxy are perhaps a billion cold brown dwarfs, objects many times as massive as Jupiter but not big enough to ignite as a star. According to a new study, layers of their upper atmospheres sit at temperatures and pressures resembling those on Earth, and could host microbes that surf on thermal updrafts...Observations of cold brown dwarf atmospheres reveal most of the ingredients Earth life depends on: carbon, hydrogen, nitrogen, and oxygen, though perhaps not phosphorous. (4)

These ideas build upon work done by the late, great Carl Sagan (with his Cornell colleague E. E. Salpeter) on the potential for life in the clouds of the gas giant Jupiter, first considered back in the 1970s (5).  They envisioned giant ‘floaters’ filled with hydrogen bobbing through the Jovian atmosphere, tiny ‘sinkers’ and self-propelled ‘hunters’ which had evolved from the lazy floaters (6).  All very speculative, but presented in Dr Sagan’s inimitably compelling fashion.  Read More…

  • 0

On Proxima b

August 2016 saw the announcement of the discovery of an Earth-like planet orbiting our nearest neighbourhood star – the red dwarf Proxima Centauri.  The official press release was preceded by a leak to the German media from within the team of astronomers.  Here, I tell the story of the rumours of the announcement, and the wider implications of the discovery itself:

Rumours of an Earth-like Planet Orbiting Proxima Centauri

The German magazine Der Spiegel has reported that a major announcement is imminent:  there is an Earth-like planet orbiting the red dwarf star Proxima Centauri; the Sun’s closest stellar neighbour at 4.24 light years distance.

The magazine claims that the discovery was made by the European Southern Observatory (ESO) using the La Silla Observatory’s reflecting telescope in Chile, based upon a leak from an astrophysicist who has been working with the La Silla team (1).  This alleged discovery is in keeping with the current work being carried out at La Silla, as described in January earlier this year:

“What good news that the Pale Red Dot project is now planning a two-month observing campaign to search for potential Earth-analogs around Proxima Centauri using HARPS, the High Accuracy Radial velocity Planet Searcher spectrograph at the ESO La Silla 3.6m telescope. Nightly monitoring began on January 18th.” (2)

Read More…

  • 0