Life in the Clouds

I’ve spent many years extolling the virtues of life on a cold brown dwarf moon.  Similar to the Galilean moons of Jupiter, a moon orbiting a sub-brown dwarf would be warmed internally by the tidal forces generated by its proximity to such a powerful gravitational force.  Additionally, the sub-brown dwarf itself might provide some local heating, or at least an abundance of charged-particle strewn local magnetic fields to energise the sub-stellar environment.  So, a habitable environment on a moon seems a likely scenario.  If a cold, dark sub-brown dwarf were to be found orbiting the Sun at a great distance, then it neatly provides the grounding for extraterrestrial life on our doorstep (1).

This seems to me to be the simplest scenario for life in a sub-brown dwarf system.  There are complexities – tidally-locked moons (2), lack of light, and so on.  But the basics are there.

lifeinclouds

Another exotic possibility is that the sub-brown dwarf itself might harbour life.  The complex cloud systems in these failed stars can contain layers which are at room temperature, and abundant in water and other chemical goodies which could form the building blocks of life.  A team of astronomers from Edinburgh University have been considering this very point, wondering whether very simple life might be able to get going in the clouds of a cold brown dwarf (3).  This life might arise in two ways – either somehow evolving from scratch in the cloud environment, or originally being seeded into it by an impacting asteroid or comet.  Either way, conditions for life might be good, except for the lack of a solid surface to dwell on:

Floating out by themselves in the Milky Way galaxy are perhaps a billion cold brown dwarfs, objects many times as massive as Jupiter but not big enough to ignite as a star. According to a new study, layers of their upper atmospheres sit at temperatures and pressures resembling those on Earth, and could host microbes that surf on thermal updrafts...Observations of cold brown dwarf atmospheres reveal most of the ingredients Earth life depends on: carbon, hydrogen, nitrogen, and oxygen, though perhaps not phosphorous. (4)

These ideas build upon work done by the late, great Carl Sagan (with his Cornell colleague E. E. Salpeter) on the potential for life in the clouds of the gas giant Jupiter, first considered back in the 1970s (5).  They envisioned giant ‘floaters’ filled with hydrogen bobbing through the Jovian atmosphere, tiny ‘sinkers’ and self-propelled ‘hunters’ which had evolved from the lazy floaters (6).  All very speculative, but presented in Dr Sagan’s inimitably compelling fashion.  Read More…

  • 0

Down a Dusty Lane

Picking up on the mystery of how a massive Planet X could form beyond the outer confines of the Sun’s magnetic environment, as per my previous posts on the accretion of dust beyond the heliopause (1,2) and an exploratory scientific paper I published earlier in the year (3).  I’m searching for evidence, or at least some educated guesswork, about whether interstellar medium beyond the heliosphere of stars might be sufficient over time to build up substantial, gaseous planets loosely bound to their parent star systems.  Such planets might, I suggest, accumulate dust clouds and rings around them, undisrupted by the action of the solar wind trapped within the inner magnetic sphere of the solar system.

bd_snowdisk

Even though this kind of accumulation could be gradually taking place over billions of years, creating a meaningful adjustment to the mass of a substantial planet over these kinds of time periods, it doesn’t seem likely that this kind of effect could take place if our current interstellar environment is anything to go by (although the unexpected presence of interstellar ‘fluff’ beyond the heliopause, described by NASA (4), and the intrusion of large grain particles into the outer solar system (5) do offer some evidence of what could be ‘out there’).

Last month, I looked at evidence of massive stars being aided in their development by the dumping of immense quantities of neighbouring nebula material onto them (6).  I wondered whether a similar mechanism might also be happening in interstellar space at the planetary level, based upon globular frameworks of nebula materials (like gigantic molecular clouds, and the like).

Read More…

  • 0

Could Subaru Spot Nibiru?

Almost nine months after the release of their paper about the likely existence of Planet Nine (1), Drs Mike Brown and Konstantin Batygin have secured a sizeable chunk of valuable time on the Subaru telescope, based in Hawaii. If they’re right about where it is, and luck is on their side, then they may detect the elusive planet within weeks. Brown and Batygin think they’ve narrowed it down to roughly 2,000 square degrees of sky near Orion, which will take approximately 20 nights of telescope time to cover with the powerful 8.2-meter optical-infrared Subaru telescope at the summit of Maunakea, Hawaii, which is operated by the National Astronomical Observatory of Japan (2).  Mike Brown is quite gung-ho about it, as can be gleaned from these extracts from a recent interview with the L.A. Times:
“”We are on the telescope at the end of September for six nights. We need about 20 nights on the telescope to survey the region where we think we need to look. It’s pretty close to the constellation Orion…We’re waiting for another couple of weeks before it’s up high enough in the sky that we can start observing it and then we’re going to start systematically sweeping that area until we find it.

“”It makes me think of the solar system differently than I did before. There’s the inner solar system, and now we are some of the only people in the world who consider everything from Neptune interior to be the inner solar system, which seems a little crazy.”” (3)

An Artist's impression of Planet Nine. Image credit: Caltech/R. Hurt (IPAC)

An Artist’s impression of Planet Nine. Image credit: Caltech/R. Hurt (IPAC)

Let’s hope they’re on the money. They have quite a lot to say about some of the correspondence that comes their way from members of what might loosely be termed ‘the Planet X community’.

Read More…

  • 3

Sub-Brown Dwarfs Hiding in Plain Sight

Not so long ago, brown dwarfs (failed stars caught in an awkward in-betweener zone between stars and planets) were hypothetical bodies.  Their low stellar masses allow for only a very short period of light-emission in their early years, after which they cool and darken considerably.

[A] brown dwarf has too little mass to ignite the thermonuclear reactions by which ordinary stars shine.  However, it emits heat released by its slow gravitational contraction and shines with a reddish colour, albeit much less brightly than a star.” (1)

It was recognised early on that if they existed at all, they would be very difficult to spot – and so it proved.  In recent years, the ability to detect these objects has improved considerably, including more effective infra-red sky surveys.  As they have become more common, the frontier of sub-stellar bodies has dropped in mass into the ultra-cool stellar bodies known as sub-brown dwarfs – many of which would equally properly be designated as rogue gas giant planets.  These objects tend to have masses below 13 times that of Jupiter (13Mj) (2).  These objects have always interested me greatly, and very early on in my own research efforts I was advocating the potential importance of sub-brown dwarfs in the hunt for additional planets orbiting our own Sun at great distances (3).  I used the term ‘Dark Star’ to describe these ultra-cool objects; a term suggested by a friend of mine.  Some can be found orbiting stars (usually beyond 50AU) while others are free-floating entities in their own right.

Read More…

  • 0

Complex Brown Dwarf Systems ‘Baffle’ Astronomers

A couple of brown dwarfs have been discovered in a close binary system some 240 light years away, whose two stars circle each other at a distance of about 19AU, similar to that of Uranus around the Sun.   The two new exoplanets orbit close to the primary Sun-like star HD 87646 (1).  These two sub-stellar companions are HD 87646b, which is a minimum 12MJupiter sub-brown dwarf (a ‘hot Jupiter’-type exoplanet) orbiting every 13 days just 0.117AU from the star (2); and  HD 87646c, which is a 57MJupiter brown dwarf circling the star every 673 days (1).  The orbital eccentricity of the brown dwarf is greater than that of the inner sub-brown dwarf, which is in keeping with other observations of brown dwarfs orbiting stars.

brown_dwarfs

Image Credit: Janella Williams, Penn State University

The international team that discovered this remarkable system is perplexed as to how it might have come about:

“Given the fact that HD 87646 is the first known system to have two massive substellar objects orbiting a star in a close binary and the masses of the two objects are close to the minimum masses for burning deuterium and hydrogen, these peculiarities raise questions about the system’s formation and evolution.

“”The large masses of these two substellar objects suggest that they could be formed as stars with their binary hosts: a large molecular cloud collapsed and fragmented into four pieces; the larger two successfully became stars and formed the HD 87646 binary, and the other smaller ones failed to form stars and became the substellar objects in this system. This scenario might be relevant for the binary stars but seems problematic for the two substellar objects on orbits within one AU because it is unclear whether fragmentation on such a small scale can occur,” the paper reads (1)

“Other hypothesis offered by the scientists is that the two newly discovered giant objects were formed like giant planet in a protoplanetary disk around HD 87646A. However, they added that such massive disks are rare in close binaries, and further investigation is needed to confirm this explanation.” (3)

Read More…

  • 0

Interstellar Planet Formation

Continuing the discussion from last month’s blog about planetessimal-building conditions in space beyond the solar system’s heliopause boundary (1).  In my February paper, I discussed anomalous results which had come back from various space probes regarding the influx of large grain interstellar dust into the heliosphere (2).  More on this in a moment.  A correspondent of mine had noted similarities between what I had been writing about and previous work by Paul LaViolette, who had written about the origins of the dust picked up by the Ulysses spacecraft:

“I would suggest that the dust originates from a circumsolar dust sheath that is concentrated toward the plane of the ecliptic in a fashion similar to the disk girdling the star Beta Pictoris and that is co-moving with the Sun. Infrared observations confirm the existence of dust sheaths around other stars in the solar neighborhood, leading to the conclusion that our Solar System is similarly shrouded.” (3)

The 20 million year old star Beta Pictoris provides astronomers with the best example of a gas giant exoplanet found orbiting within an evolving proto-planetary disk, made all the more dramatic by its side-on view and the brightness of scattered light from the revolving disk:

“In 1984 Beta Pictoris was the very first star discovered to host a bright disc of light-scattering circumstellar dust and debris. Ever since then Beta Pictoris has been an object of intensive scrutiny with Hubble and with ground-based telescopes. Hubble spectroscopic observations in 1991 found evidence for extrasolar comets frequently falling into the star.” (4)

Read More…

  • 0

4Mj Dark Star found in Triple Star System

A young ‘Dark Star’, weighing in at 4 Jupiter masses, is one of only a few such exoplanets to have been directly imaged.  It’s also a rather curious object for another reason:  It’s orbiting the main star of a triple star system some 340 light years away, in a dynamical arrangement which lies on the very edge of mathematical possibility (1).  HD131399ab is just 16 million years old, and could be classified as an ultra cool sub-brown dwarf rather than a Jovian class gas giant.  At this youthful age its temperature is about 600 degrees Celsius, allowing it to be directly imaged in infra-red by SPHERE operated by the European Southern Observatory.

The triple star system is indeed curious.  The two minor stars (B and C) orbit the main star A at a distance of about 300 Astronomical Units, all the time twirling around each other at approximately Saturn’s distance from the Sun.  The newly discovered exoplanet, HD131399ab, also orbits around the main star A in a wide orbit “about twice as large as Pluto’s if compared to our solar system, and brings the planet to about one-third of the separation of the stars [B & C] themselves.” (2).  The massive planet’s orbit around its parent star is by far the widest known orbit within a multi-star system.

This graphic shows the orbit of the planet in the HD 131399 system (red line) and the orbits of the stars (blue lines). The planet orbits the brightest star in the system, HD 131399A.

This graphic shows the orbit of the planet in the HD 131399 system (red line) and the orbits of the stars (blue lines). The planet orbits the brightest star in the system, HD 131399A.  Image Credit ESO

Read More…

  • 1

Dust in the Winged

I’ve been hinting in recent blogs that I have been developing a new idea about the Planet X phenomenon. I’ve held off writing about it for a while because I wanted to try to present the idea at a conference and gauge the reaction to the idea.  That opportunity presented itself at the ‘Il Ritorno di Planet X Nibiru’ conference held in Rome on 29th May 2016, at which I was the keynote international speaker (1).  I presented two one-hour talks, and during the second one I discussed the arguments behind this new idea, complete with some explanatory slides.  There were some light-bulb moments among the delegates, I’m happy to say, and so I think it’s a good time to present part of this thesis in a very concise way here, for general consideration.  A more detailed examination of this idea may be the subject of a future book.

winged planetx_conference_rome2016

Read More…

  • 6

Early Solar System Catastrophism

The two moons of Mars have always presented planetary scientists with something of a mystery. These tiny moons, Phobos and Deimos, whizz around Mars at no great height at all: Phobos whips around the red planet in less than 8 hours, at a height of only 3,700 miles – the closest of any moon to its parent planet. I say ‘parent’ advisedly because a new theory of the origin of these peculiar little moons suggests that they emerged from a major impact between mars and a dwarf planet. It has generally been assumed that they were captured asteroids, but the relative circularity of their orbits argued against such a capture. Work on the possibility of a catastrophic origin was carried out last year by two separate teams of researchers, after decades of battling intense scepticism within the scientific community (1). An important finding of the modelling at that time was that the resultant debris would circulate around the red planet at a relatively low altitude, which is in keeping with the orbits of the two extant moons.
More recently, further computer modelling of various impact scenarios carried out by one of those teams has narrowed down the range of masses of an impactor to about the size of Pluto. The resultant debris field was initially far more extensive than the two moons left today:
Read More…

  • 0

Haystack Latest: The Hunt for Planet Nine Goes On…

Academic papers aimed at further constraining the parameters of the purported ‘Planet Nine’ body continue to emerge from various quarters, many from researchers with long-term interests in outer solar system anomalies. Fairly quickly after Brown and Batygin’s announcement about Planet Nine (1), a paper was published by A. Fienga et al examining the astrometry of Saturn through Cassini’s radio ranging data (2). This work served to constrain the possible locations of Planet Nine, which were wide ranging to say the least. This is because if one can establish the very precise positioning of outer planets over time, then this can provide clues to any slight gravitational effect, or perturbation, the planet might be experiencing from an undiscovered distant substantial Planet X body (3). However, given that Planet Nine is thought to have a highly elliptical orbit, then if it is located at the further end of that ellipse, its effect upon the outer planets gravitationally becomes vanishingly small. It turns out then, as one might predict, that we can rule out its current location being in the nearer half of its elliptical path, according to the Cassini data about Saturn. Which is more or less common sense, anyway.
Read More…

  • 0