Sub-Brown Dwarfs Hiding in Plain Sight

Not so long ago, brown dwarfs (failed stars caught in an awkward in-betweener zone between stars and planets) were hypothetical bodies.  Their low stellar masses allow for only a very short period of light-emission in their early years, after which they cool and darken considerably.

[A] brown dwarf has too little mass to ignite the thermonuclear reactions by which ordinary stars shine.  However, it emits heat released by its slow gravitational contraction and shines with a reddish colour, albeit much less brightly than a star.” (1)

It was recognised early on that if they existed at all, they would be very difficult to spot – and so it proved.  In recent years, the ability to detect these objects has improved considerably, including more effective infra-red sky surveys.  As they have become more common, the frontier of sub-stellar bodies has dropped in mass into the ultra-cool stellar bodies known as sub-brown dwarfs – many of which would equally properly be designated as rogue gas giant planets.  These objects tend to have masses below 13 times that of Jupiter (13Mj) (2).  These objects have always interested me greatly, and very early on in my own research efforts I was advocating the potential importance of sub-brown dwarfs in the hunt for additional planets orbiting our own Sun at great distances (3).  I used the term ‘Dark Star’ to describe these ultra-cool objects; a term suggested by a friend of mine.  Some can be found orbiting stars (usually beyond 50AU) while others are free-floating entities in their own right.

Read More…

  • 0

Complex Brown Dwarf Systems ‘Baffle’ Astronomers

A couple of brown dwarfs have been discovered in a close binary system some 240 light years away, whose two stars circle each other at a distance of about 19AU, similar to that of Uranus around the Sun.   The two new exoplanets orbit close to the primary Sun-like star HD 87646 (1).  These two sub-stellar companions are HD 87646b, which is a minimum 12MJupiter sub-brown dwarf (a ‘hot Jupiter’-type exoplanet) orbiting every 13 days just 0.117AU from the star (2); and  HD 87646c, which is a 57MJupiter brown dwarf circling the star every 673 days (1).  The orbital eccentricity of the brown dwarf is greater than that of the inner sub-brown dwarf, which is in keeping with other observations of brown dwarfs orbiting stars.

brown_dwarfs

Image Credit: Janella Williams, Penn State University

The international team that discovered this remarkable system is perplexed as to how it might have come about:

“Given the fact that HD 87646 is the first known system to have two massive substellar objects orbiting a star in a close binary and the masses of the two objects are close to the minimum masses for burning deuterium and hydrogen, these peculiarities raise questions about the system’s formation and evolution.

“”The large masses of these two substellar objects suggest that they could be formed as stars with their binary hosts: a large molecular cloud collapsed and fragmented into four pieces; the larger two successfully became stars and formed the HD 87646 binary, and the other smaller ones failed to form stars and became the substellar objects in this system. This scenario might be relevant for the binary stars but seems problematic for the two substellar objects on orbits within one AU because it is unclear whether fragmentation on such a small scale can occur,” the paper reads (1)

“Other hypothesis offered by the scientists is that the two newly discovered giant objects were formed like giant planet in a protoplanetary disk around HD 87646A. However, they added that such massive disks are rare in close binaries, and further investigation is needed to confirm this explanation.” (3)

Read More…

  • 0

Interstellar Planet Formation

Continuing the discussion from last month’s blog about planetessimal-building conditions in space beyond the solar system’s heliopause boundary (1).  In my February paper, I discussed anomalous results which had come back from various space probes regarding the influx of large grain interstellar dust into the heliosphere (2).  More on this in a moment.  A correspondent of mine had noted similarities between what I had been writing about and previous work by Paul LaViolette, who had written about the origins of the dust picked up by the Ulysses spacecraft:

“I would suggest that the dust originates from a circumsolar dust sheath that is concentrated toward the plane of the ecliptic in a fashion similar to the disk girdling the star Beta Pictoris and that is co-moving with the Sun. Infrared observations confirm the existence of dust sheaths around other stars in the solar neighborhood, leading to the conclusion that our Solar System is similarly shrouded.” (3)

The 20 million year old star Beta Pictoris provides astronomers with the best example of a gas giant exoplanet found orbiting within an evolving proto-planetary disk, made all the more dramatic by its side-on view and the brightness of scattered light from the revolving disk:

“In 1984 Beta Pictoris was the very first star discovered to host a bright disc of light-scattering circumstellar dust and debris. Ever since then Beta Pictoris has been an object of intensive scrutiny with Hubble and with ground-based telescopes. Hubble spectroscopic observations in 1991 found evidence for extrasolar comets frequently falling into the star.” (4)

Read More…

  • 0

4Mj Dark Star found in Triple Star System

A young ‘Dark Star’, weighing in at 4 Jupiter masses, is one of only a few such exoplanets to have been directly imaged.  It’s also a rather curious object for another reason:  It’s orbiting the main star of a triple star system some 340 light years away, in a dynamical arrangement which lies on the very edge of mathematical possibility (1).  HD131399ab is just 16 million years old, and could be classified as an ultra cool sub-brown dwarf rather than a Jovian class gas giant.  At this youthful age its temperature is about 600 degrees Celsius, allowing it to be directly imaged in infra-red by SPHERE operated by the European Southern Observatory.

The triple star system is indeed curious.  The two minor stars (B and C) orbit the main star A at a distance of about 300 Astronomical Units, all the time twirling around each other at approximately Saturn’s distance from the Sun.  The newly discovered exoplanet, HD131399ab, also orbits around the main star A in a wide orbit “about twice as large as Pluto’s if compared to our solar system, and brings the planet to about one-third of the separation of the stars [B & C] themselves.” (2).  The massive planet’s orbit around its parent star is by far the widest known orbit within a multi-star system.

This graphic shows the orbit of the planet in the HD 131399 system (red line) and the orbits of the stars (blue lines). The planet orbits the brightest star in the system, HD 131399A.

This graphic shows the orbit of the planet in the HD 131399 system (red line) and the orbits of the stars (blue lines). The planet orbits the brightest star in the system, HD 131399A.  Image Credit ESO

Read More…

  • 1

Dust in the Winged

I’ve been hinting in recent blogs that I have been developing a new idea about the Planet X phenomenon. I’ve held off writing about it for a while because I wanted to try to present the idea at a conference and gauge the reaction to the idea.  That opportunity presented itself at the ‘Il Ritorno di Planet X Nibiru’ conference held in Rome on 29th May 2016, at which I was the keynote international speaker (1).  I presented two one-hour talks, and during the second one I discussed the arguments behind this new idea, complete with some explanatory slides.  There were some light-bulb moments among the delegates, I’m happy to say, and so I think it’s a good time to present part of this thesis in a very concise way here, for general consideration.  A more detailed examination of this idea may be the subject of a future book.

winged planetx_conference_rome2016

Read More…

  • 6

Early Solar System Catastrophism

The two moons of Mars have always presented planetary scientists with something of a mystery. These tiny moons, Phobos and Deimos, whizz around Mars at no great height at all: Phobos whips around the red planet in less than 8 hours, at a height of only 3,700 miles – the closest of any moon to its parent planet. I say ‘parent’ advisedly because a new theory of the origin of these peculiar little moons suggests that they emerged from a major impact between mars and a dwarf planet. It has generally been assumed that they were captured asteroids, but the relative circularity of their orbits argued against such a capture. Work on the possibility of a catastrophic origin was carried out last year by two separate teams of researchers, after decades of battling intense scepticism within the scientific community (1). An important finding of the modelling at that time was that the resultant debris would circulate around the red planet at a relatively low altitude, which is in keeping with the orbits of the two extant moons.
More recently, further computer modelling of various impact scenarios carried out by one of those teams has narrowed down the range of masses of an impactor to about the size of Pluto. The resultant debris field was initially far more extensive than the two moons left today:
Read More…

  • 0

Haystack Latest: The Hunt for Planet Nine Goes On…

Academic papers aimed at further constraining the parameters of the purported ‘Planet Nine’ body continue to emerge from various quarters, many from researchers with long-term interests in outer solar system anomalies. Fairly quickly after Brown and Batygin’s announcement about Planet Nine (1), a paper was published by A. Fienga et al examining the astrometry of Saturn through Cassini’s radio ranging data (2). This work served to constrain the possible locations of Planet Nine, which were wide ranging to say the least. This is because if one can establish the very precise positioning of outer planets over time, then this can provide clues to any slight gravitational effect, or perturbation, the planet might be experiencing from an undiscovered distant substantial Planet X body (3). However, given that Planet Nine is thought to have a highly elliptical orbit, then if it is located at the further end of that ellipse, its effect upon the outer planets gravitationally becomes vanishingly small. It turns out then, as one might predict, that we can rule out its current location being in the nearer half of its elliptical path, according to the Cassini data about Saturn. Which is more or less common sense, anyway.
Read More…

  • 0

More Evidence for Planet Nine

One of the pair of Caltech scientists who announced in January that there was a very high probability that a ‘super-Earth’, dubbed ‘Planet Nine’, exists beyond Neptune (1,2), has noted that a newly discovered eccentric Kuiper Belt Object cuts down the possibility that they were wrong still further.

“The object [uo3L91] shares some of the same behavior as the other six Kuiper Belt bodies, suggesting it has also been pushed by a large planet that is between 200 and 1,200 times the distance from the Sun to Earth. The object was discovered by the Canada France Hawaii Telescope, which is conducting the Outer Solar System Origins Survey (OSSOS); information about its movements were presented recently by astronomer Michele Bannister at the SETI Institute.” (3)

An Artist's impression of Planet Nine. Image credit: Caltech/R. Hurt (IPAC)

An Artist’s impression of Planet Nine. Image credit: Caltech/R. Hurt (IPAC)

Read More…

  • 0

Dark Star Symbolism in the Zohar

Last month, I discussed the assumed orbital period of Nibiru, 3600 years, and how Zecharia Sitchin may have arrived at that figure (1).  This included a description of a journey to ‘Olam’ through seven heavens of 500 years each mentioned in a conversation between a heretic and the Jewish savant Rabbi Gamliel.  Sitchin may have been influenced by this Hebrew text when he considered the likely orbital period of Nibiru/Marduk, a Planet X body which he described from his reading and interpretation of various ancient Sumerian texts (2).

Read More…

  • 1

The Shroud Hypothesis as part of a Dark Star Solution

For a number of years, I’ve been trying to figure out how a massive planet could have evaded direct detection in visible light and infra-red, despite there being a lot of indirect evidence for its existence.  I’ve not been alone in wondering this, although many of the researchers who have been working on this problem have been coming to it from a slightly different angle.  They’ve been of the opinion that Nibiru is almost upon us, but has not been spotted by astronomers, for a variety of reasons (cover-up, planet hidden behind the Sun, obscuring artificial shield, exotic object, and so on…).  I’ve always been convinced that this missing planet lies a long way out, and since the early 2000s I’ve considered it probable that it doesn’t actually come through the planetary system at all any more, although it likely did in the distant past.  So, I’ve been trying to figure out how this object has evaded detection – without resorting to exotic solutions, like mini-black holes, Dark Matter, plasma shields or such like.

Read More…

  • 2